素粒子物理におけるJuliaの活用 ~格子QCDの大規模計算に向けて~

Akio Tomiya (IPUT Osaka, Assistant Prof.) akio_at_yukawa.kyoto-u.ac.jp

Outline

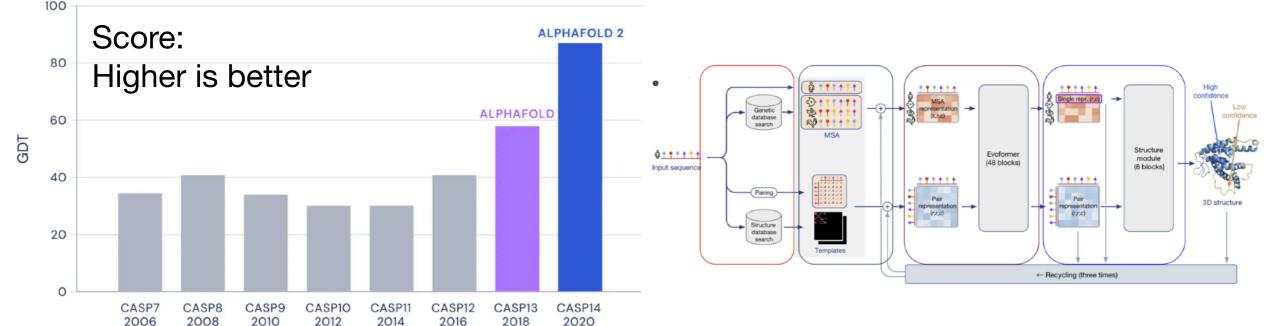
- 素粒子物理学? 格子QCD?
- Julia言語での取り組み
- 何ができれば良いのか

How to treat gauge fields with neural networks?

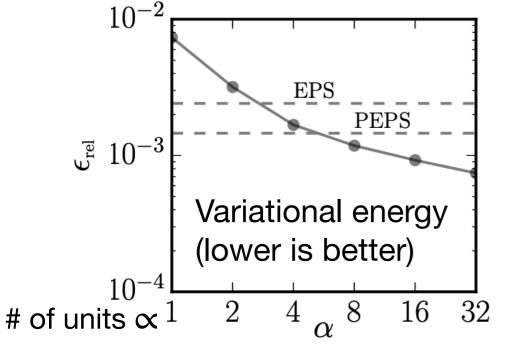
Applications of neural network in natural science

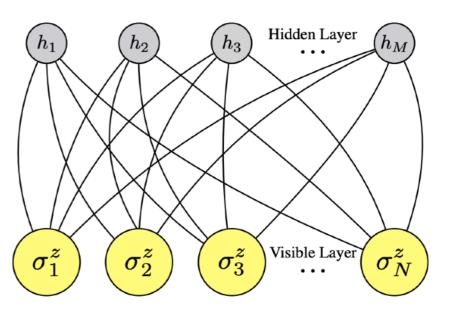
Neural network have been good job

Folding of protein (AlphaFold2, John Jumper+, Nature, 2020+)



Neural network wave function for many body (Carleo Troyer, Science 355, 602 (2017))





Neural net + Expert knowledge → Best performance

What is neural networks?

Affine transformation + element-wise transformation

Layers of neural nets $l = 2,3,\dots,L, \overrightarrow{u}^{(1)} = \overrightarrow{x}$

$$\begin{cases} \vec{z}^{(l)} = W^{(l)} \overrightarrow{u}^{(l-1)} + \overrightarrow{b}^{(l)} \\ u_i^{(l)} = \sigma^{(l)} (z_i^{(l)}) \end{cases}$$

Affine transf.
(b=0 called linear transf.)

element-wise (local)

A fully connected neural net

$$f_{\theta}(\overrightarrow{x}) = \sigma^{(3)}(W^{(3)}\sigma^{(2)}(W^{(2)}\overrightarrow{x} + \overrightarrow{b}^{(2)}) + \overrightarrow{b}^{(3)})$$

 θ is a set of parameters: $w_{ij}^{(l)}, b_i^{(l)}, \cdots$

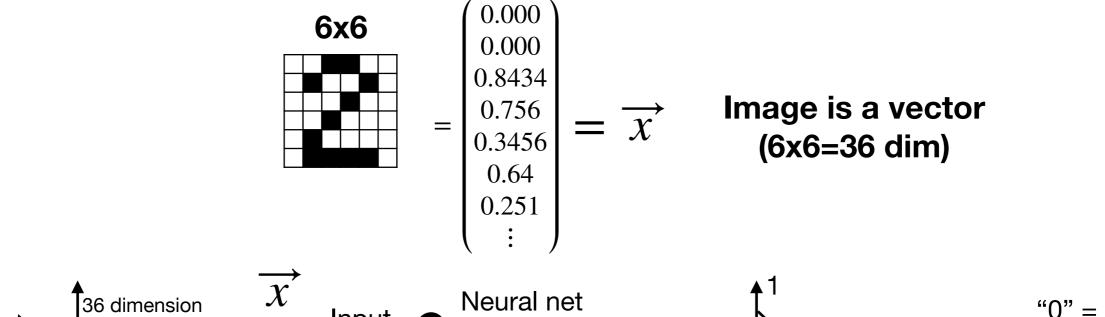
Neural network = map between vectors and vectors

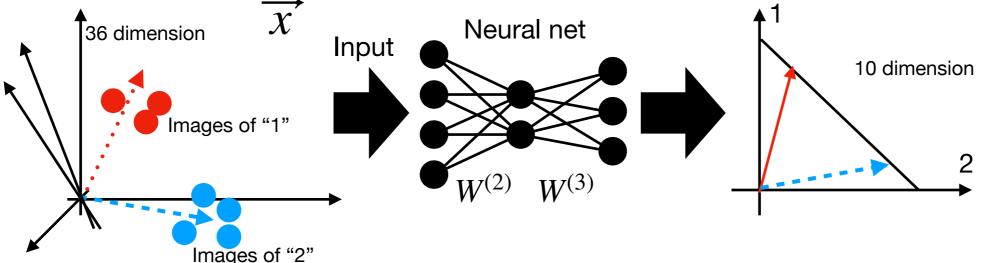
Physicists terminology: Variational transformations

What is the neural networks?

Neural network is a universal approximator

Example: Recognition of hand-written numbers



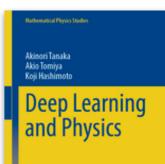


"0" =
$$(1,0,0,...)$$

"1" = $(0,1,0,...)$
"2" = $(0,0,1,...)$
...
"9" = $(0,0,...,1)$

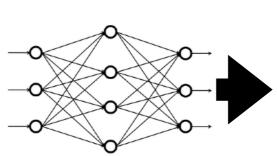
Fact: Neural network can mimic any function = A systematic variational function.

In this example, NN mimics image (36-dim vector) and label (10-dim vector)

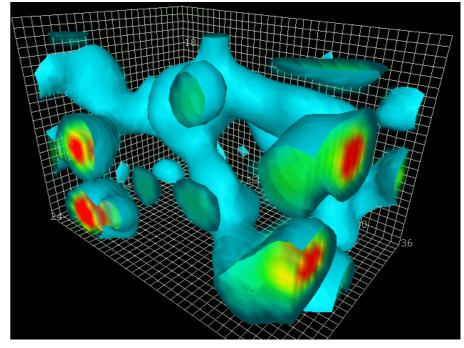


ML for LQCD is needed

- Neural networks
 - Data processing techniques mainly for 2d image (a picture = pixels = a set of real #)
 - Neural network helps data processing e.g. AlphaFold2
- Lattice QCD requires numerical effort but is more complicated than pictures
 - 4 dimension
 - Non-abelian gauge d.o.f. and symmetry
 - Fermions (Fermi-Dirac statistics)
 - Exactness of algorithm is necessary
- Q. How can we deal with neural nets?



thispersondoesnotexist.com



http://www.physics.adelaide.edu.au/theory/staff/leinweber/VisualQCD/QCDvacuum/

Gauge covariant neural network

= trainable smearing

AT Y. Nagai arXiv: 2103.11965

Smearing = Gauge covariant way of transform gauge configurations

Covariant sum

$$U_{\mu}(n) \rightarrow U_{\mu}^{\mathrm{smr}}(n) = \mathcal{N} \left[(1-\alpha)U_{\mu}(n) + \frac{\alpha}{6}V_{\mu}^{\dagger}[U](n) \right] \quad \begin{array}{l} \mathrm{Staple} \\ V_{\mu}^{\dagger}[U](n) = \sum_{\mu \neq \nu} U_{\nu}(n)U_{\mu}(n+\hat{\nu})U_{\nu}^{\dagger}(n+\hat{\mu}) + \cdots \end{array} \right] \quad \text{Staple} \quad \text{Stap$$

$$\mathcal{N}\left[M\right] = \frac{M}{\sqrt{M^{\dagger}M}}$$
 Normalization or projection

Gauge covariant neural network = General smearing with tunable parameters w

$$\begin{cases} z_{\mu}^{(l)}(n) = w_1^{(l)} U_{\mu}^{(l-1)}(n) + w_2^{(l)} \mathcal{G}_{\bar{\theta}}^{(l)}[U] \\ \mathcal{N}(z_{\mu}^{(l)}(n)) & \text{point-wise (local)} \end{cases}$$
 Train (tune, fitting)

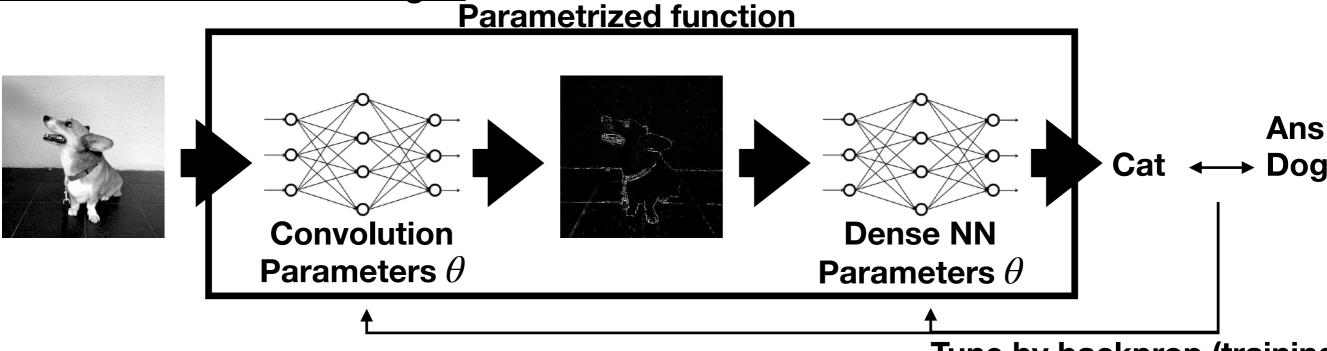
Gauge covariant NN:
$$U_{\mu}^{\rm NN}(n)[U] = U_{\mu}^{(4)}(n) \left[U_{\mu}^{(3)}(n) \left[U_{\mu}^{(2)}(n) \left[U_{\mu}^{(2)}(n) \right] \right] \right]$$

Gauge covariant variational map:
$$U_{\mu}(n)\mapsto U_{\mu}^{\mathrm{NN}}(n)=U_{\mu}^{\mathrm{NN}}(n)[U]$$

Gauge covariant neural network

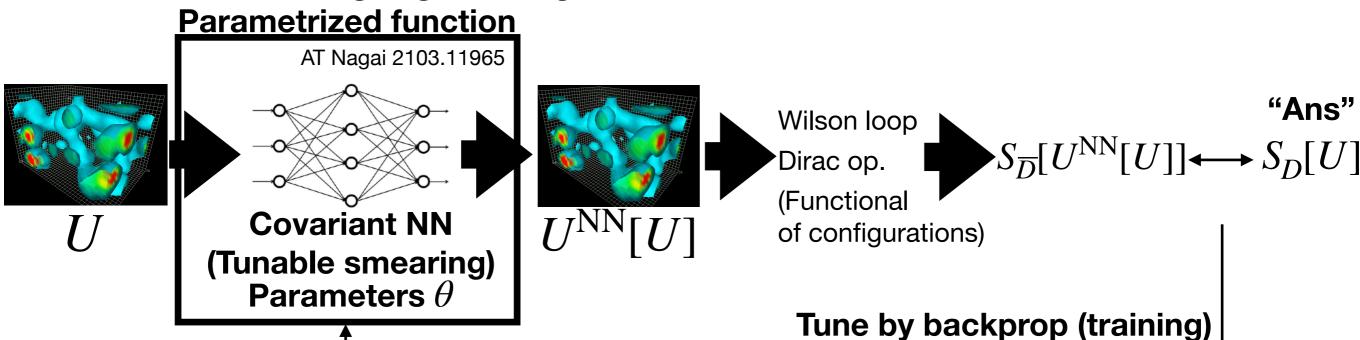
Schematic illustrations for neural networks (NN)

Neural networks for images



Tune by backprop (training)

Neural networks for gauge configurations



http://www.physics.adelaide.edu.au/theory/staff/leinweber/VisualQCD/QCDvacuum/

Gauge covariant neural network

= trainable smearing

AT Y. Nagai arXiv: 2103.11965

Dictionary

	(convolutional) Neural network	Gauge Covariant Neural network	
Input	Image (2d data, structured)	gauge config (4d data, structured)	
Output	tput Image ga (2d data, structured) (4d da		
Symmetry	Translation	Translation, rotation(90°) Gauge sym.	
with Fixed param	Image filter	(APE/stout) Smearing	
Local operation	Summing up nearest neighbor with weights	Summing up staples with weights	
Activation function	Tanh, ReLU, sigmoid,	projection/normalization in Stout/HYP/HISQ	
Formula for chain rule	Formula for chain rule Backprop "Smeare calculation		
Training?	Backprop + Delta rule	AT Nagai 2103.11965	

Well-known

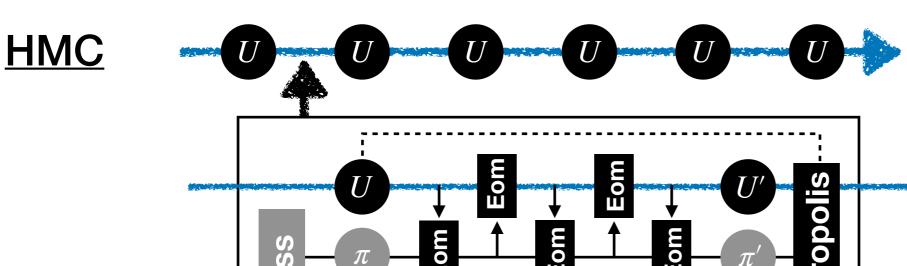
(Index i in the neural net corresponds to n & µ in smearing. Information processing with NN is evolution of scalar field)

SLHMC = Exact algorithm with ML

SLHMC for gauge system with dynamical fermions

Gauge covariant neural network can mimics gauge invariant functions

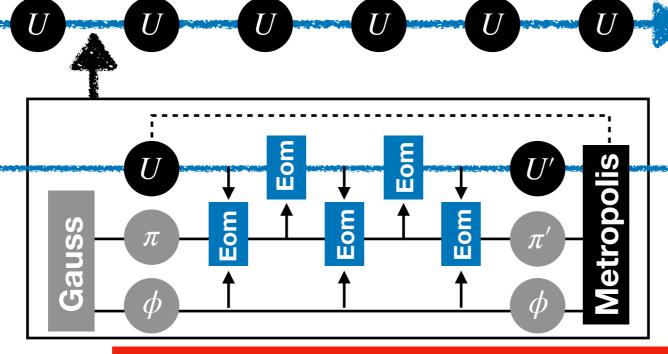
-> It can be used in simulation? -> Self learning HMC!



Eom Metropolis Both use

 $H_{\rm HMC} = \frac{1}{2} \sum_{\rm m} \pi^2 + S_{\rm g} + S_{\rm f}$

Non-conservation of H cancels since the molecular dynamics is reversible



Metropolis

$$H = \frac{1}{2} \sum_{g} \pi^2 + S_g + S_f[U]$$

Eom

$$H = \frac{1}{2} \sum_{i} \pi^{2} + S_{g} + S_{f} [U^{NN}[U]]$$

Neural net approximated fermion action but <u>exact</u>

arXiv: 2103.11965 and reference therein

SLHMC works as an adaptive reweighting!

Application for the staggered in 4d

Problems to solve

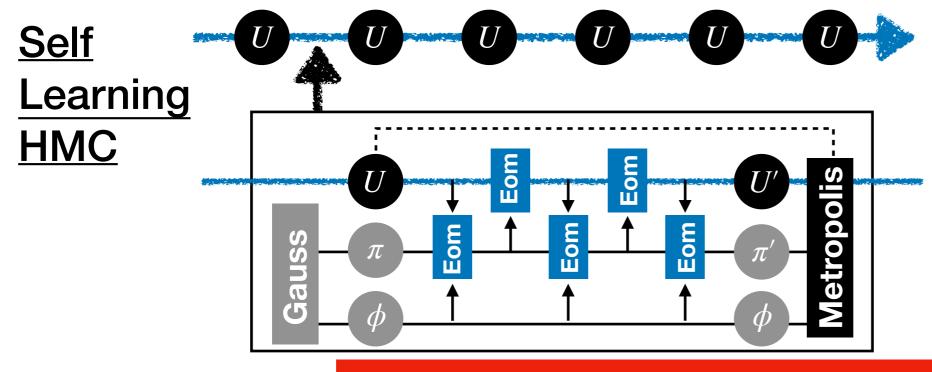
arXiv: 2103.11965

Mimic different action (Dirac operator):

(Final target: Domain-wall vs overlap)

A toy problem: Staggered (heavy) vs Staggered (light)

$$\begin{cases} \text{Target action} & S[U] = S_{\mathrm{g}}\big[U\big] + S_{\mathrm{f}}\big[\phi, U; m = 0.3\big], \\ \text{Metropolis} & S_{\theta}[U] = S_{\mathrm{g}}\big[U\big] + S_{\mathrm{f}}\big[\phi, U_{\theta}^{\mathrm{NN}}[U]; m_{\mathrm{h}} = 0.4\big], \end{cases}$$



Metropolis

$$H = \frac{1}{2} \sum_{g} \pi^{2} + S_{g} + S_{f}[U]$$

Eom

$$H = \frac{1}{2} \sum_{i} \pi^{2} + S_{g} + S_{f} [U^{NN}[U]]$$

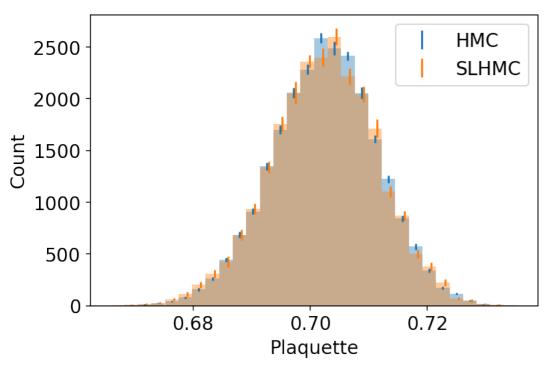
Neural net approximated fermion action but exact

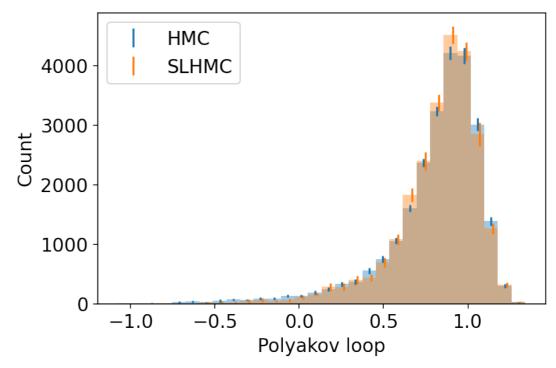
SLHMC works as an adaptive reweighting!

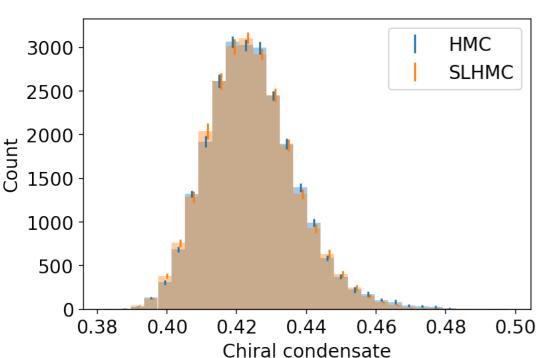
Application for the staggered in 4d

Results are consistent with each other

arXiv: 2103.11965







SLHMC Plaquette 0.7023(2) HMC Polyakov loop 0.82(1) SLHMC Polyakov loop 0.83(1) HMC Chiral condensate 0.4245(5)	Expectation value						
SLHMC Plaquette 0.7023(2) HMC Polyakov loop 0.82(1) SLHMC Polyakov loop 0.83(1) HMC Chiral condensate 0.4245(5)	Algorithm	Observable	Value				
HMC Polyakov loop 0.82(1) SLHMC Polyakov loop 0.83(1) HMC Chiral condensate 0.4245(5)	HMC	Plaquette	0.7025(1)				
SLHMC Polyakov loop 0.83(1) HMC Chiral condensate 0.4245(5)	SLHMC	Plaquette	0.7023(2)				
HMC Chiral condensate 0.4245(5)	HMC	Polyakov loop	0.82(1)				
	SLHMC	Polyakov loop	0.83(1)				
SLHMC Chiral condensate 0.4241(5)	HMC	Chiral condensate	0.4245(5)				
	SLHMC	Chiral condensate	0.4241(5)				

Julia language on Fugaku, Lattice code in Julia

(LatticeQCD.jl and GomalizingFlow.jl)

BenchmarkSpeed of Julia ~ Clang

- 1. Open source scientific language (Just in time compiler/LLVM backend)
- 2. Fast as C/Fortran (faster sometimes), Practical as Python
- 3. Machine learning friendly

	Compiler	Benchmark (sec) single core	Туре	Parallelism	GPU	Pros	Cons	Column, row	Note
Julia (1.8)	JIT, LLVM	0.0014	Dynamic & Static	MPI, others	CUDA	Fast Practical ML feiendly	not major	column- major	
С	Clang (LLVM)	0.0033	Static	MPI, others	CUDA	Fast	Long codes	row-major	
Python +Numba	(CPython) JIT, LLVM	0.0131	Dynamic	Available	Numba- CUDA	Practical ML feiendly	Not fully supported	row-major (Numpy)	(Rosetta2 is used in benchmark)

C and Julia have similar speed

Benchmarks are performed on m1 mac mini (similar tendency on Xeon)

Benchmark: Multiplications for 12dim vector and 12x12 complex matrix for 10⁴ times (repeated 10 times)

Benchmark Code comparison

```
using Random
function main()
 = 10
K = 10^4
N = 12
  = zeros(ComplexF64, (N,N))
V = zeros(ComplexF64, N)
W = zeros(ComplexF64, N)
function myprod(A,V,W)
    for k = 1:N
         for i = 1:N
             W[i] += A[i, k]*V[k]
         end
    end
end
...(cut)...
                        Attached in backup
```

```
#include <stdio.h>
#include <complex.h>
#include <math.h>
#include <time.h>
#include <stdlib.h>
#define T 10
#define K 10000
#define N 12
...(cut)...
void myprod(double complex A[N][N], double complex *V,
 double complex *W) {
  for (int k = 0; k < N; k++) {
    for (int i = 0; i < N; i++) {
      W[i] += V[k] * A[k][i];
                                             Attached in backup
```

- Complex matrix (12x12) times complex vector (d=12)
 - One set= 10⁴ times, and repeated 10 times and averaged
- Code of Julia looks like Python (short, simple) but fast as C
 Julia: 0.0014 (sec), C: 0.0033 (sec). Single core performance is similar

I thank Taku Izubuchi 16

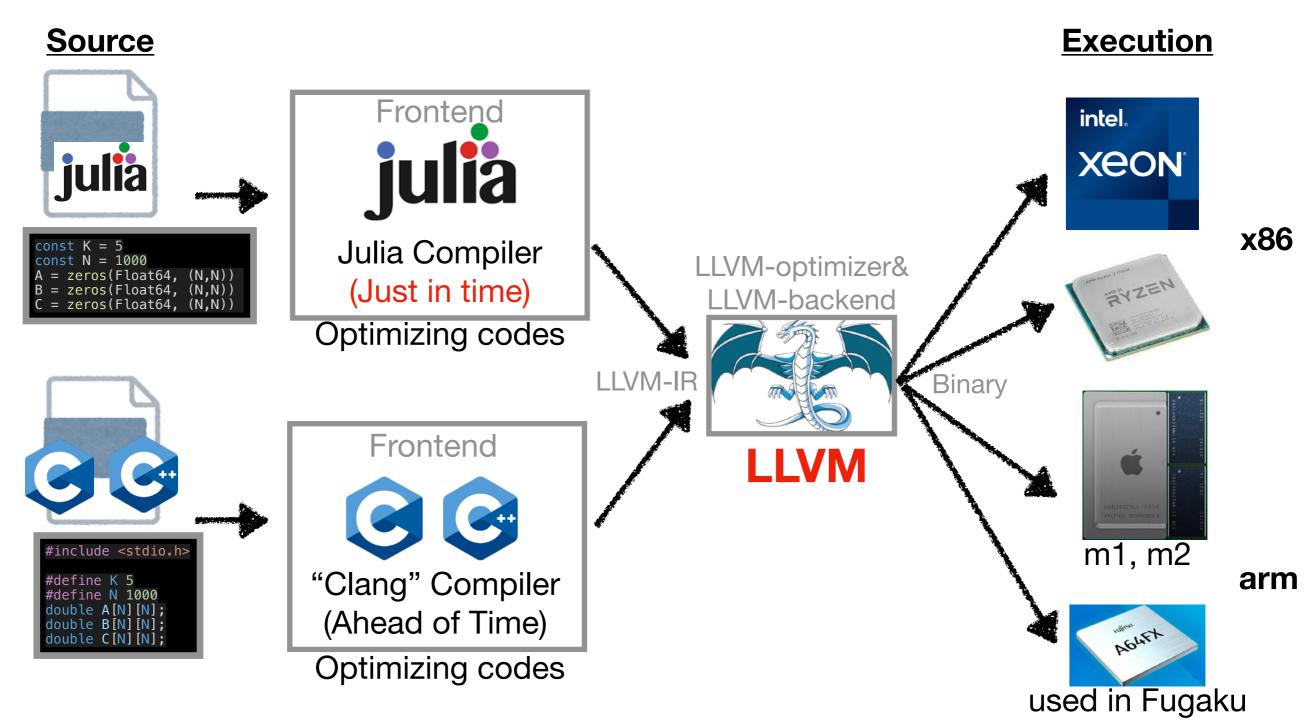
BenchmarkWhy Julia? (My personal opinion)

[1] https://akio-tomiya.github.io/julia_in_physics/ [2] https://gr.ae/prgSG5

- Modern scientific programming language
- Easy to make codes. Fast as C/C++ (Julia& C use LLVM)
- Fewer compiling/dependency issues.
- Many people are potentially interested in. (More than 400 people registered to "Julia in physics 2022 online workshop" [1]). 4,923 public repo on Github
- No two Language problem. "The fact that while the users are programming in a high-level language such as R and Python, the performance-critical parts have to be rewritten in C/C++ for performance". [2]
 - Neural network friendly (Flux.jl). Tensor networks also (iTensor.jl).
- Works on/with
 - Xeon, Radeon/Apple silicon/<u>A64FX</u>
 - MPI, GPU

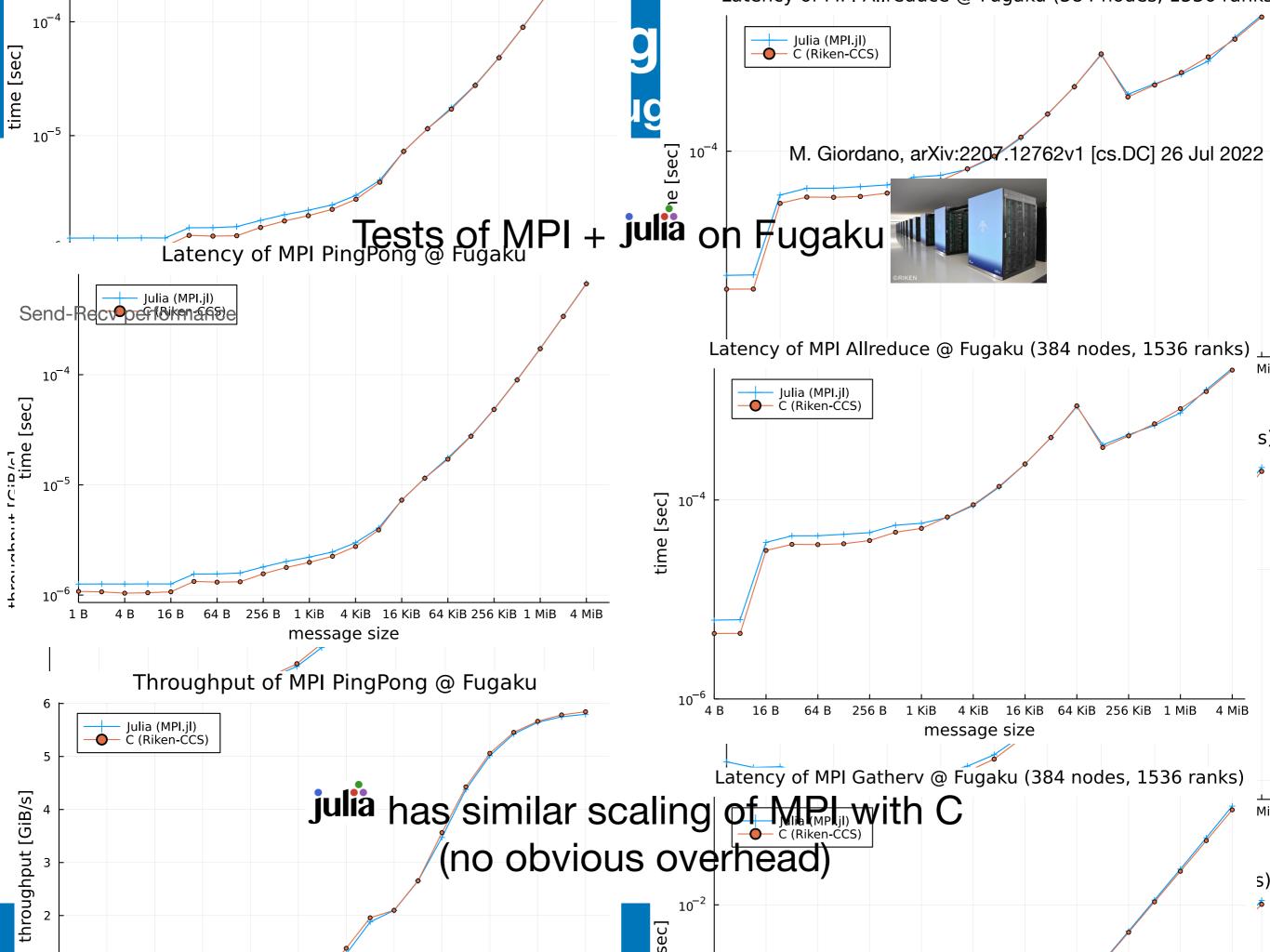
LLVM?

LLVM = common backend for making binaries on multiple architectures



https://www.fujitsu.com/jp/about/businesspolicy/tech/fugakuhttps://ja.wikipedia.org/wiki/Apple_M1

https://ja.wikipedia.org/wiki/Xeon https://gigazine.net/news/20200623-japan-fugaku-fastest-supercomputer/



Lattice QCD code

Open source LQCD code in Julia Language

LatticeQCD Open source (Julia Official package, Now updated to v1.0)

Machines: Laptop/desktop/Jupyter/Supercomputers

Functions: SU(Nc)-heatbath, (R)HMC, Self-learning HMC, SU(Nc) Stout

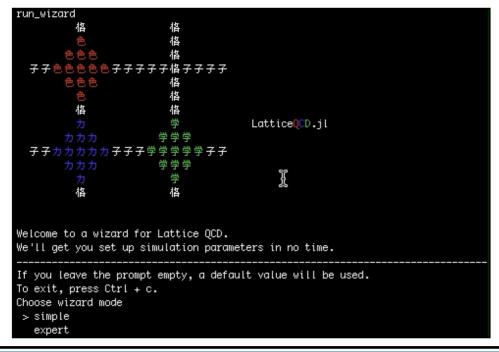
Dynamical Staggered, Dynamical Wilson, Dynamical Domain-wall

Measurements

Start LQCD in 5 min

- 1. Download Julia binary
- 2. Add the package through Julia package manager
- 3. Execute!

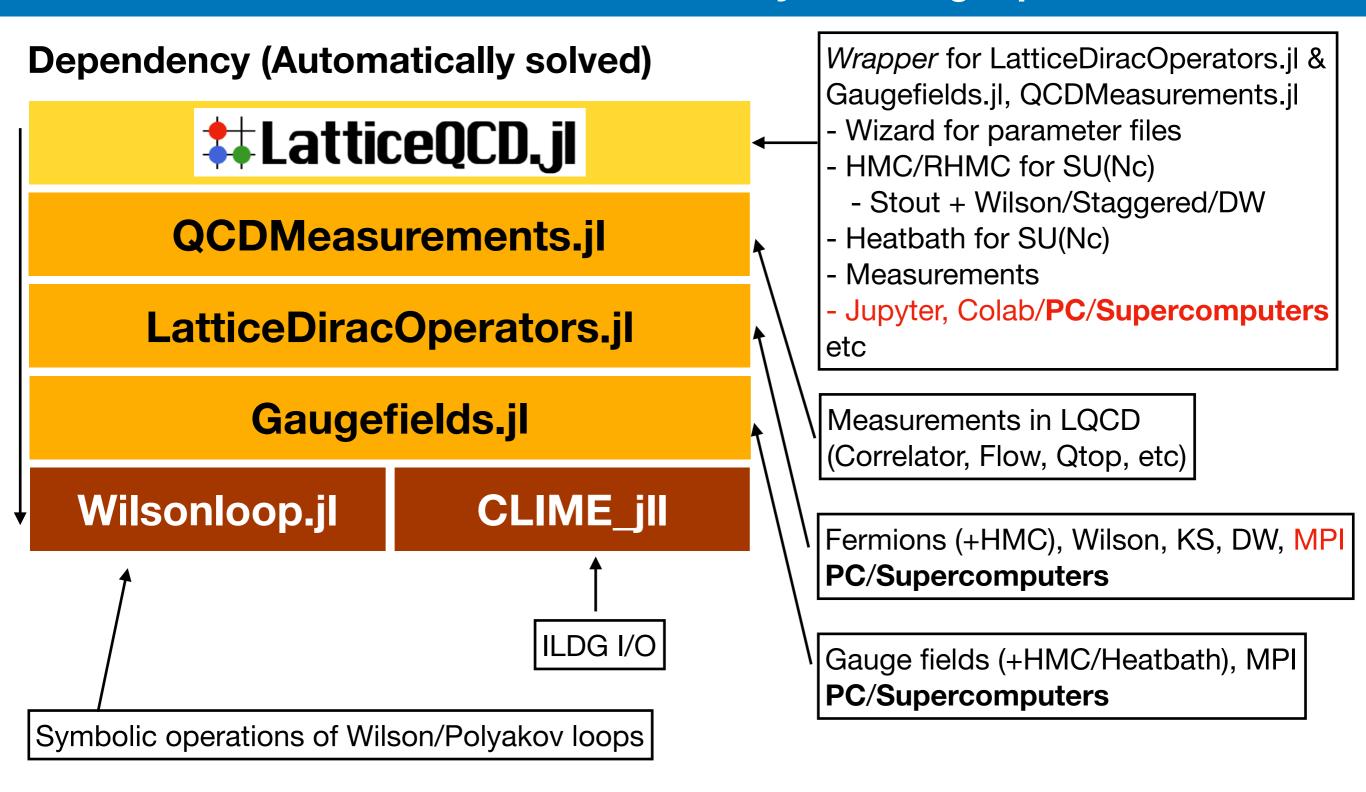
https://github.com/akio-tomiya/LatticeQCD.jl





Package structure

Our lattice QCD codes are constructed by following repositories

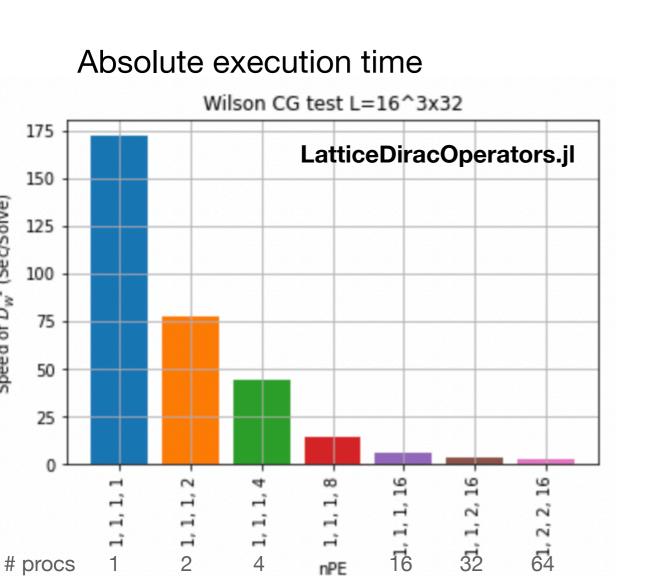


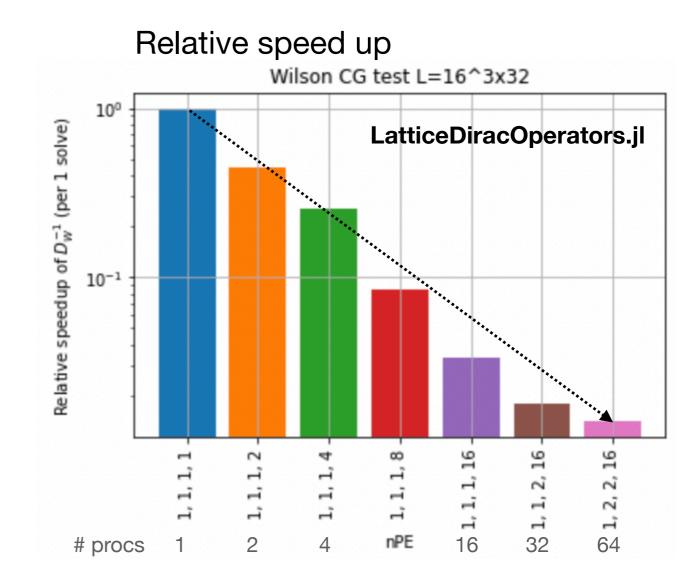
See https://github.com/akio-tomiya/LatticeQCD.jl in detail

Benchmark of Julia + QCD

Wilson inversion / MPI parallel, Strong Scaling

Tested on Yukawa-21@YITP





It looks scaling well

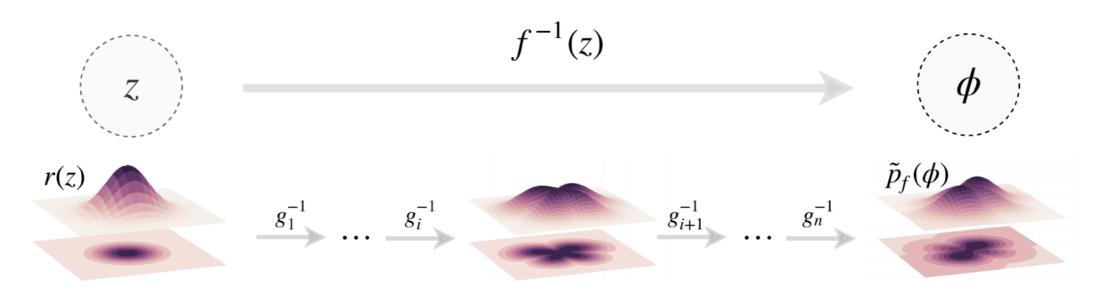
We need more contributors! Please help us

Speed of D_W^{-1} (Sec/Solve)

Flow based sampling algorithm

Trivializing map realized using neural network

Normalizing flow? = Trivializing map, exact MCMC with ML



(a) Normalizing flow between prior and output distributions

Change of variable by a neural network (Normalizing flow)

$$\phi = F^{(NN)}[\varphi]$$

Sampling from Gaussian

- → Inverse trivializing map (neural net)
- → QFT configurations → Tractable Jacobian (by even-odd strategy)
- → After sampling, Metropolis-Hastings test → exact!

Related talk: Nobuyuki Matsumoto (Feb 16)

Aug 2022 [hep-lat] arXiv:2208.08903v1

Normalizing flow in Julia

A public code in Julia Language

GomalizingFlow.jl: A Julia package for Flow-based sampling algorithm for lattice field theory

Akio Tomiya

Faculty of Technology and Science, International Professional University of Technology, 3-3-1. Umeda, Kita-ku, Osaka, 530-0001, Osaka, Japan

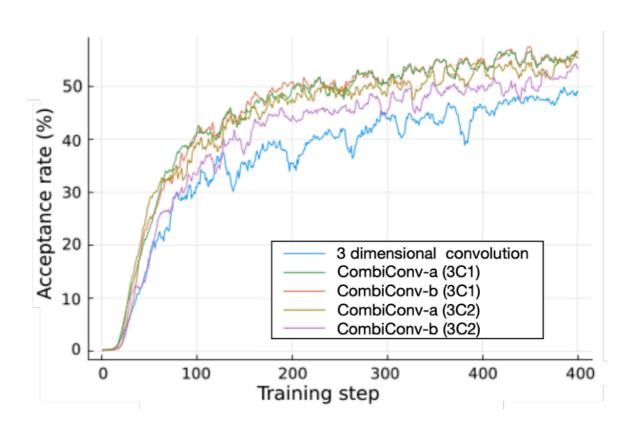
Satoshi Terasaki

AtelierArith, 980-0004, Miyagi, Japan

https://arxiv.org/abs/2208.08903

A public Julia code for the flow-based sampling algorithm for scalar field. This supports not only 2d but also 3d. CPU/GPU with Docker.

https://github.com/AtelierArith/GomalizingFlow.jl



A new type of convolution improves acceptance rate (~ shorten the autocorrelation)

I reported in NeurIPS 2022 workshop https://ml4physicalsciences.github.io/2022/

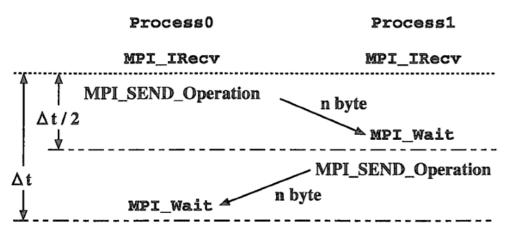
Summary LQCD + Machine learning by Julia language

arXiv: 2103.11965 arXiv: 2208.08903

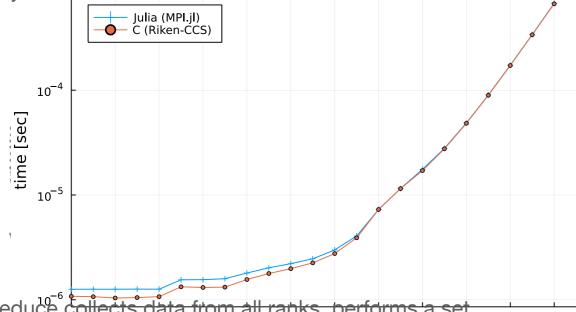
- Machine learning for LQCD
 - Neural net (NN) + expert knowledge -> Best performance e.g. AlphaFold2, NN wave functions
 - NN can deal with 4d non-abelian gauge symmetric data now
 - Self-learning HMC with NN works for dynamical fermions
- Julia language for LQCD/HPC/ML
 - Julia has similar speed with C (w/ & w/o MPI), and machine learning friendly
 - Two Julia codes for lattice field theory
 - LatticeQCD.jl: A suite lattice QCD code, machine learning
 - GomalizingFlow.jl: Trivializing map via a neural network

MPI benchmark

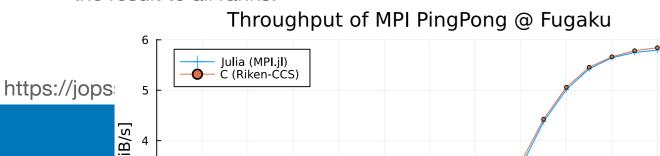
PingPong

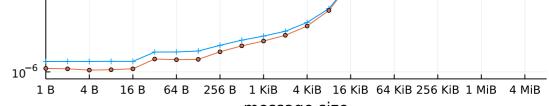


This section describes the performance of PingPong as a one-to-one communication. PingPong sends data between two ranks by Send communication from one rank, receives the data at the other rank, and then sends the data back to the original rank by Recy communication.

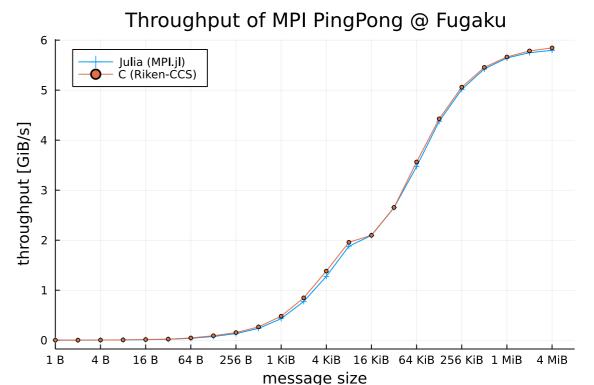


Allreduce collects data from all ranks, performs a set KIB 1 MIB 4 MIB operation, and transfers the result to all ranks.

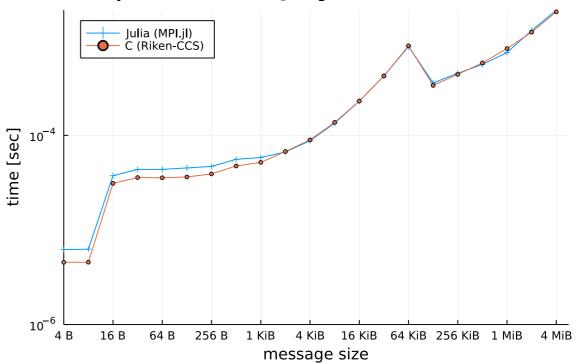




M. Giordano, arXiv:2207.12762v1 [cs.DC] 26 Jul 2022



Latency of MPI Allreduce @ Fugaku (384 nodes, 1536 ranks)



Latency of MPI Gatherv @ Fugaku (384 nodes, 1536 ranks)

ime [sec]

time [se

Introduction

Configuration generation with machine learning is developing

Year	Group	ML	Dim.	Theory	Gauge sym	Exact?	Fermion?	Reference
2017	AT, Akinori Tanaka	RBM + HMC	2d	Scalar	-	No	No	arXiv: 1712.03893
2018	K. Zhou+	GAN	2d	Scalar	-	No	No	arXiv: 1810.12879
2018	J. Pawlowski +	GAN +HMC	2d	Scalar	-	Yes?	No	arXiv: 1811.03533
2019	MIT+	Flow	2d	Scalar	-	Yes	No	arXiv: 1904.12072
2020	MIT+	Flow	2d	U(1)	Equivariant	Yes	No	arXiv: 2003.06413
2020	MIT+	Flow	2d	SU(N)	Equivariant	Yes	No	arXiv: 2008.05456
2020	AT, Akinori Tanaka +	SLMC	4d	SU(N)	Invariant	Yes	Partially	arXiv: 2010.11900
2021	M. Medvidovic´+	A-NICE	2d	Scalar	-	No	No	arXiv: 2012.01442
2021	S. Foreman	L2HMC	2d	U(1)	Yes	Yes	No	
2021	AT+	SLHMC	4d	QCD	Covariant	Yes	YES!	This talk
2021	L. Del Debbio+	Flow	2d	Scalar, O(N)	-	Yes	No	
2021	MIT+	Flow	2d	Yukawa	-	Yes	Yes	
2021	S. Foreman,	Flowed HMC	2d	U(1)	Equivariant	Yes	No but compatible	arXiv: 2112.01586
2021	XY Jing	Neural	2d	U(1)	Equivariant	Yes	No	
2022	J. Finkenrath	Flow	2d	U(1)	Equivariant	Yes	Yes (diagonalization)	arxiv: 2201.02216
2022	MIT+	Flow	2d, 4d	U(1), QCD	Equivariant	Yes	Yes	arXiv:2202.11712 +
2022	AT+	Flow	2d, 3d	Scalar		Yrs		

Benchmark Code comparison

```
using Random
function main()
T = 10
K = 10^4
N = 12
A = zeros(ComplexF64, (N,N))
V = zeros(ComplexF64, N)
W = zeros(ComplexF64, N)
function myprod(A,V,W)
    for k = 1:N
        for i = 1:N
            W[i] += A[i, k]*V[k]
        end
    end
end
function test(A,V,W)
    for jj=1:T
        runtimes=[]
        for r=1:K
            A := rand(N,N) + im*rand(N,N)
            V = rand(N) + im*rand(N)
            W .= 0
            tmp = @elapsed myprod(A,V,W)
            push!(runtimes,tmp)
        println("\$(jj-1) \$(sum(runtimes)) \#W[1] = \$(W[1])")
    end
end
test(A,V,W)
end
if abspath(PROGRAM_FILE) == @__FILE__
    main()
```

```
#include <stdio.h>
#include <complex.h>
#include <math.h>
#include <time.h>
#include <stdlib.h>
#define T 10
#define K 10000
#define N 12
double urand(){
    double m, a;
    m = RAND_MAX + 1;
    a = (rand() + 0.5)/m;
    a = (rand() + a)/m;
    return (rand() + a)/m;
void myprod(double complex A[N][N], double complex *V, double complex *W) {
  for (int k = 0; k < N; k++) {
    for (int i = 0; i < N; i++) {
      W[i] += V[k] * A[k][i];
void test(double complex A[N][N], double complex *V, double complex *W) {
  for (int jj = 0; jj < T; jj++) {
    double runtimes = 0;
    for (int r = 0; r < K; r++) {
      for (int i = 0; i < N; i++) {
        for (int j = 0; j < N; j++) {
    A[i][j] = urand() + urand() * I;
        V[i] = urand() + urand() * I;
        W[i] = 0.0 + 0.0 * I;
      clock_t start = clock();
      myprod(A, V, W);
      clock_t end = clock();
      runtimes += (double)(end - start) / CLOCKS_PER_SEC;
    printf("%d %f # W[0] = %f %f\n", jj, runtimes, creal(W[0]), cimag(W[0]));
int main() {
  double complex A[N][N];
  double complex V[N];
  double complex W[N];
  test(A, V, W);
  return 0;
```